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By Franmk S. Malvestuto, Jr., and Kenneth Margolils
SUMMARY

The stablility derlvatives valld for a limited range of supersonic
speeds are presented for a series of sweptback wings tapered to a point
with sweptback or sweptforward tralling edges. These wings were derived
by modifying the trailing edge of a bagic triangular wing so that 1t
coinclded with lines drawn from the wing tips to the wing axis of symmetry.
The stabllity derivaetives were formulated by using the pressure distribu—
tlons previously obtained for the basic triangular wing for angle of
attack, sldeslip, pitching, rolling, and yawing. Expliclt expressions
are glven for the stabllity derlvatives with respect to principal body
axes and conversion formulas are provided for the transformatlion to
gtebility axes. The results are limited to Mach numbers for which the
wing 1s contalned wlthin the Mach cones springing from the vertex and
from the trailing edge of the center section of the wing.

INTRODUCTION

Methods based upon linearized potential flow have been developed in
roferences 1 to 5 for determining the pressure distributions for angle
of attack and cldeslipping, pltching, and rolling motioms of a triangular
wing of small thickness traveling at supersonic speeds. The results of
these Investigations are valid for a renge of Mach number for which the
Mach cone springing from the apex of the wing may be behind or shead of
the leading edge of the wing. In reference 6 attention is given only to
triangular wings contained within the Mach cone springing from the wing
apex. Methods are obtalned therein for determining the rolling moment
due to yawing and the several side—force and yawing-moment derivatives,
together with a collection of all the known stability derivatives for
triangular wings at supersonic speeds. As pointed out in these previous
investigations, 1f the trailing edge of the triangular wing is modified
go as to colncide with any line which is Inclined at an angle always
greater than the Mach angle (fig. 1), a series of sweptback wings with
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sweptback or sweptforward tralling edges will be developed which will
have the sams pressure distribution over their surfaces as that determined
for the basic trisngular wing. This phenomsnon is based on the well—
known Pfact that, in linearized supersonic flow, disturbances cannot
propagate any farther forward than the Mach cone from the origin of
disturbances. '

The object of the present paper is to determine the stability
derivatives at supersonic speeds for this limited series of sweptback
wings with pointed tips by using the pressure distributlons previously
determined for the basic triangular wing. Explicit expressions are
presented for these stability derivatives with respect to the principal
body axes and ‘conversion formulas are provided for the transformation to
stabllity axes.

The results are restricted to wings that are contained within the
Mach cones springing from the apex and the trailing edge of the center
section of the wing. ) .

SYMBOLS

X, ¥, z rectangular coordinates (figs. 1 and 2)

u, v, w incremental flight velocities along x—, y—, and z-exes,
rospectively (fig. 3)

P, ¢, T angular velocities about x—, y—, and z—axes, respectively

(fig. 3).

fllght speed
M stream Mach number (V/Speed of sound)
4u Mach angle @m-l %—D
B cotangent of Mach angle <|/M2 - 1)
a angle of attack (w/V)
B angle of sideslip (v/V)
€ semivertex'angle of triangle (fig. 1)
P locel 1ifting pressure (pressu.re difference between upper and

lower surface of airfoil)
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tan—L

x tan ¢

density of fluid
wing span
root chord of basic trianguler wing (fig. 1)

root chord of sweptback wing (fig. 1)

b /2
mean aerodynamic chord |G = L f (Ioceal chord)e dy = ?23- c(1l — N>
0

bcr

agpect ra-.tio = b2 = 20
°P " s c(1-7)
ratlo of slope of leading edge to slope of tralling edge

( C—Cp <tan ¢ )+cot./>
= = =] 008
c tan B A

be(l — N) =

vl o
Aol | o
=lw

wing area <S= bey =

)

leading-edge slope @,= tan ¢ = é%)
sweepback angle of leading edge (90° — ¢)

angle of trailing-edge slope (fig. 1)

Y
= (f1g. 1)

y
— i.l
C(fg )

distance of center of gravity forward of £ ¢,0,0 position
3 I~

C
static margin E = C%

c




L NACA TN No. 1761

E*(BC)  complete elliptic integral of the second kind with modulus kj
/2
f V1 — K°sin’z dz
0

F*(BC) camlete elliptic integral of the first kind with modulus k;

]

Tt = __}_.
B (BC) = Et(BC)
' 2
J1 - 822
C a2
o(80) = 1 — Bec2

(1 — 2B2C2)E*(BC) + BRCRF!(BC)

H(BC) = 3G(BC) — 2B**(BC)

2(1 — B2CR)
(2 — B2C2)E(BC) — B2C2rt(BC)

J(BC) = E'*(BC)I(BC) /1 — B2

I(BC) =

Lt rolling moment

L normal force (approx. 1ift)
M? pitching moment

nt yawing moment

Y lateral force

Cy, 11t coefficient <L/%pves>

C, rqlling-moment coefficient (L'/%pVQSl)
Cp pltching-moment coefficlent <M‘/]2—‘pv286>



NACA TN No. 1761 5

Cn yawing-moment coefficient <N'/%pV2S't>

lateral—Fforce coefficient <Y/ %QVZS>

. Pr
Cp profile~drag coefficient (

ofile d:r'a.g>
o)

1.2
§pVS

When a, &, q, P, B, and r are used as subscripts, a nondimensional
derivative is indicated, and this derivative is the slope of the variation

oCy oCp
through zero. For example, Cmd. = — P = = s
@), )
&—>0 Vi —o0
oC c aC
C'l = ___7'_ s C'L = _._z. , and C'L = L
3R S O
ov. B—0 v
p—0 —0

A dot ebove a symbol denotes differentiatien with respect '“I:o time.
A1l angles are measured in radians.

. Unprimed stabllity derivatives refer to principal body axes;
primed stabllity derivatives refer to stability axes.

ANATYSTS

/

The stabllity derlvatives of a triangular wing of zero thickness 0
at small angles of attack in a supersonic air stream have been determined
theoretically in the investigations of references 1 to 6. These
derivatives, with the exception of those which depend on skin friction,
may be separated into two classes — the derivatives which depend upon
the distribution of pressure over the wing and the derivatives which depend
upon. the suctlion force along the leading edge of the wing. Although the
edge—suction derivatives have been summarized in this paper, the pressure
coefficlents needed to determine these derlvatives are not presented.

The local lifting-pressure coefficients used to obtain the derivatives
which are dependent on the pressure distributlon over the triangular wing
contained within the Mach cone springing from the apex are presented in
table I. These lifting—pressure coefficients and also the lifting
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pressures (1oca.l pressure coefflcient tlmes %pv2) are of the general

form xAf(rn) where x is the x—compcnent of the distance from the
origin of the axes to a particular point on the wing and 17 1s the
ratlo of the slope of a ray from the vertex of the wing through the
point to the slope of the leading edge of the wing. (See fig. 1.)

For the local lifting-pressure coefficients of the stablility derivatives
listed In table I, the expanent n of the distance x 1s either

equal to O or to 1. For n = 0, the pressure is constant along any

ray 1 = Comstant from the vertex; this case is termed "conical flow."
For mn = 1, the pressurs Increases linearly along each such ray, and
the flow may be termed "quasi—conical.”

The particular form x2f(n) noted for the distribution of the
1ifting pressures suggests the "triangular" integration procedure for
determining the forces and moments. Thus, the wing is conslidered as
camposed of an infinite number of elemental triangular areas (see fig. 1).
The 1ift and first moment of the 1ift are then determined for each
elemental triengulaer area and the results summed up by integration to
glve the force and moment derivatives for the complete wing. Figures 2,
3, and 4 indicate the position and positive direction of the axes used
in the analysis together with the positive direction of the velocities,
forces, and moments relative to these axes.

Canical flows: Derivatives C and. Cy_.— Table I shows
‘g’ Cmy 18

that the local lifting-pressure coefficients of the derivatives CI'cr,’
Cmu, and 07';3 depend solely upon 17 &nd therefore represent conical

flows. The 1lift of an elemental triangle (see fig. 1) is

dla=%‘xl dyq P(q) (1)

where P(7n) is the local 1ifting pressure for any of these three
stability derivatives. Since x; and y, can be written as functions

of 7, that is,

X 36 =
17271 —qq
_ 35 90

dyl EC 1 — Ny
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equation (1) becomes

P(n) an

(1 - 1T11)2 )

292
d.L-BcC

For the moment of 1ift of an elemental aree first consider the fact that
can be determined fram reference 1 that for a canical—flow condition the
resultant 1ift of a trlangle acts at a point 2/3 the chord of the

triangle from the vertex, or for this case %xl of the elemental

triangle. Hence, the moment of the elemental 1ift sbout the y—axis
(origin at the vertex of the triangle) is

amM* =—§—xldlr

and by the use of equation (2) this moment beccmes

aMt = — 2 &3¢ _B(n) dn_ (3)
(1 —-1q)3

For moments about the x—principal axis (rolling moments)

dLt = -y 4L

where y 18 the y—coordinate of the position of the center of pressure
for P = f(n). Figure 1 indicates that for this condition

<
]

2
30

1-HNy
hence

art = — 9 532 Bln)n dn (k)
(l —_ Nn)3

Equations (2), (3), and (&) are the differential forms of the 1ift
and the pitching and rolling moments of the wing about the vertex when
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the pressure distribution 1s a function only of 7. In order to obtain the
1ift and the piltching and rolling moments, the P(n) functions @ressure

coefficlents multiplied by %DV% for these motions obtained from table I

are substituted into equations (2), (3), and (4) end these equations are
integrated with respect to 17 over the entire wing. Because the wing

is symmetrical with respect to the x—principal axis the integration

* can be performed between the limits O to 1 and the results multiplied

by 2. The nondimensiocnal integral forms of the stebility derivatives CIcc’

Cm,, and Cy, have been derived, converted to a different center—of-—
gravity position, and listed in teble I. The new center of gravity 1s

located a distance & c¢ fram the vertex, and the shift affects only the

derivative CIIICL Integration of the integrals involved in these derive—

tives will produce functions of N which give the varlation of the
stability derivatives with N, the ratio of the slope of the leading
edge to the slope of the tralling edge of the wing. The deriva—
tive CI’m has previously been determined In reference T for the

type of wing consldered herein.

8i-caonlcal flows: Derlvatives - , C and Cq .—
Qua CI'C'L’ CI,q: Cmm: Cmq: ZP: Ly

Teble I indicates that the pressure coefficients for the derivatives CI'CL s
C. C and C T th xf is th
CLq: Cm&,’ mg* Uy 7, 8&re o e form (n) where x 1is the

x—component of the distance from the vertex of the wing to the point in
question. For this case the 1ift of an elemental triangle is glven by

=E
aL = f xf(n)xC dqn dx
x=0

which can be rewrlitten as

I=Il
£()C an f *ax

aL =
x=0
3
dL = £(n)C xlT an
hence
ar, = 2 83¢ _£(n) dn_ (5)
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Reference 4 indicates that when the pressure is of the form xf(q)

the resultant 11ft acts at the %—chord point of the triangle which for
thils case is equal to ):_-i—xl. The moment about the y-exis (origin at

the vertex of triangle) is (see equation (5))

am? =—£—xidl.
81 _u, £(n) dn
Mt = — = T'C ——— (6)

In a manner similar to the development of equation (4), the following
rolling-moment equation results when P = xf(n)

d_'[,l

81 b2 £(n)q dn

-—z

dL‘l
6h (L -1mq) °

it

(7)

Equations (5), (6), and (7) are the differential forms of the 1ift
and pitching and rolling moments for cases where the pressure distribu—
tions are of the form xf(n), that is, of a quasi-conical type. Sub—
stitutlon of the appropriate function f£(1) for C;, eand Cp .in

equetion (5), for cm& and in equation (6), and for czs" and cZr

in equation (7) will give these derivatives as a functlon of N after
the necessary operations are performed and the resulting equations are
roduced to coefficlent form. Table I presents the nondimensional integral
form of these derivatives with the origin shifted from the vertex to a

polnt % ¢ from the vertex.

Edge—suction derivatives CnB’ Cllp’ Cn'r’ CYB, CYI’ and CYr.— The
yawing and side—force derivatives depend upon the suction force along
the leading edge of the wing (references 3 and 6). This suction force
ariges as a consequence of the subsonic nature of the extermal flow
field in the vicinity of the leading edge of the wing when the leading
edge 1s swept behind the Mach cone springing from the apex of the wing.
Chaenges In the sweep of the trailing edge and area of the wing brought
about by varying N have no effect on the leading-edge suction forces
for the class of sweptback wings considered herein. These wings, as
stated previously, are contailned within the Mach cones, springing from
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the vertex and from the trailing edge of the center sectlon of the wing.
The velues of the coefficients are modified, however, because of the
difference in the reference wing area; that is, the wing area of the
sweptback wing is equal to (1 — N) +imes the wing area of the basic
trianguler wing. The derivatives obtained in reference 6 have been
accordingly modified and are presented 1n table II of this paper where
the quantity (1 — N) has been denoted by FJ_-L(N). The degree of -
applicability of these suction—force derivatives to_ actual full-scale
wings is somewhat uncertain for the reascns pointed out in reference 6

for trianguler wings.

RESULTS AND DISCUSSION

The preceding section set forth a method for determining the
stebility derilvatives for a limited serles of sweptback wings with
pointed tips and sweptback or sweptforward tralling edges as a function

tan €
of the tralling-edge—sweep paramster N = tan —=1- % cot Czt A e
' an

procedure employed pressure coefficlents previously determined for the
basic triangular wing. Table IT gives the values of the stebility

derivatives in the principal-exes system with origin at (% c ,O,@ as

ghown In figure 3 and alsoc the conversion formulas for determination

of the derivatives in the stability system of axes with origin at

a distance x,, ahead of the <% c,O,@ point as shown in figure L.
These formulas giving the conversion of the stability derivatives from
the principal-exes system to the stability-axes system were obtained by
an extension of the traneformation equations of reference 8 to teke
into consideration the shift in the origin of the stabllity axes of
distance Xog ghead of the origin of the principal axes. In the con—

verslon formilas for the stability-axes system terms whose magnitudes

are extremely small compared with unity have been omitted. The

quantities E!*(BC), Q(BC), G(BC), H(BC), I(BC), and J(BC) are the
elliptic integral factors of the stability derivatives that determine thelr
variation with Mach number. These factorse are shown graphically in

figure 5. The F(N) Pfactors of each of the derivatives are functions

of N which give the effect of trailing-edge sweep on the derivatives.
Figure 6 presents the variation of the F(N) factors with N from N = -1,
which corresponds to the case where the Mach lines coincide with the
leading end trailing edges of the wing (symmetrical diamond plan :f.‘orm),

to N = 1, which corresponds to the limiting idealized case for which

the tralling edge coincides with the leading edge of the wing. For N = O,
of course, the plan form of the wing corresponds to that of the basic
triangular wing. For those derivatives listed in table II for which
integrals are listed in table I, the F(N) factors are merely (with
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two exceptions, F5(N) and Fg(N)) the values of the integrals divided

by thelr respective values at N = 0. These derivatives then reduce
at N =0 +to those appropriate to the basic triangular wing. Because
of the extremely rapid variation of some of the F(N) factors with N,
the product (1 — N)2F(N) was plotted in Pigure 6 for these cases
inetead of merely the functions. The formulas for the F(N) factors
are listed in the appendlx together with the solution of the definite
forms of the integrals appearing in each of the F(N) <factors. For
extremely accurate evaluations of the stabillty derlvatives.it is
suggested that the necessary ¥(N) factors be calculated using the
formulas for these factors listed in the appendix instead of using the
curves of the F(N) factors presented in figure 6.

Typical variations of +the stability derlvatives with trailing—
edge—sweep parameter N and with Mach number M are presented in
Pigures 7 and 8, respectively. Because of the localized infinities
at BC =1 for the suction derivatives CYB, CnB, and Gnr in the

principal—eaxes system, all the lateral derivatives in the stability—
axes system (determined by a transformation from the principal axes

to the stability axes) which contain these suction derivatives will
also become locally infinite at BC = 1. For this reason the vari-—
ations of the illustrative lateral derivativeés in figure 8 are given
for a range of Mach number with an upper limit slightly less than the
Mach number corresponding to BC = 1. It may be noted that such a
localized infinity is defined wlith reference to an Infinitesimal angle
of sideslip, and the averege derivative for a small but finite sideslip
is not extremely large.

In reference 9 the consideration of skin friction is shown to
yield an appreclable damping moment. The skin-friction moment has
been evaluated therein as )

c xC
(Nt)f:/; f_xc Cp,, %pVRer—%c)B%y]dex- . ‘(8)

where VR 18 the resultant velocity and 'VRE = (V —ry)2 + r2 - % >2

‘ rix —=c¢
and B 1is the local sideslip angle and equals - 7 to the

first order in r. Equai:ion (8) also applies to the wings considered
herein provided the necessary changes are made in the limits of integra—
tion. Substituting the proper limits for the sweptback wing in the
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integrals of equation (8) and performing the necessary operation
yields the following nondimensional form of the skin—friction couple

that is a part of the derivative Cnr

b/2 pycotdicy,
oo / [ et -89 o
8( ) 2 0 y/c

2V

(9)

where, in terms of N and A, the upper 1limit y cot & + c,, of the
o N2y =) + b
inner integral is equal to % TTx and the lower limit y/C is
by -

T The evaluation of equation (9) gives, to the first

order in r, in the body-exes system,

equal to

_ 1 4 1-N+38

1-N+ 382
where the function ——————— designated by F,,(N) is plotted
(1~ n)? 12

against N in figure 6.

In the formuation of the derivative Czr the associated local

lifting—pressure coefficient listed In table I and originally determined
in reference 6 does not include the effect of the spanwise variations in
locel Mach number caused by yawing (although the variation in forward
speed is taken into account). In the text of reference 6 based on the
results of calculations on an infinite—espect-ratio rectangular wing
usging Ackeret theory, it is indicated that the spanwise varlation of

the compressibllity effect to the first order in r will produce first—
order changes in the local 1lifting pressures and hence in the rolling
moment due to yawing. The value of Czr presented hereln and obtalined

under the approximation of zero spanwise variation of the locel Mach
number 1s therefore subJect to doubt and should be considered only as a
rough indication of the true value.

The stabllity derivatives of this paper are velld only above a

€
certain minimum Mach number given by BC 2 |N| = '%I which is the
condition that the trailing edge be swept less than the Mach lines. An
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additional limitation is that the Mach number must be sufficiently above
unity for the linearized theory to apply. In addition to these limita—
tlons on the renge of validity of the derivetives, the limitations for
the basic trianguler wing discussed in reference 6 also apply to the
sweptback wing of this paper. h

Langley Aercnautical ILaboratory
National Advisory Committee for Aeronautics
Langley Field, Va., September 23, 1948
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APPENDTX

EVATUATION OF THE F(N) FACTORS OF THE
STABTLITTY DERIVATIVES
The determination of the F(N) factors necessitates the evaluation

of the definite integrals given in table I. The integraels of teble I
are or can be formed from the followlng baslc Integrals:

n- [0 ~
LER YL — 92

- m/l_ 2
sin 2l ¥ =0 n

1
W2 -1)1 - W 1-Tn (%2 -1)(1 - Np)

0

-’2‘-+ sin N + §f1 - B2

(1 -w)3/2

5
"

dn
(1 - N'q)3;/l - 2

1
—(w2 + 2) . N3 + 31\]'21] - iNy1 - 72
o ~1)3f-w - LT 2@ -1Pa -m)?

0

(2 + Ne)(g- + sin—lN) + Nk - F2)1 - NE

o1 — )
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dn
I =
3
[ (1- Nn)h}’l - 12

@ -1)31 - 1 - T

*

=[ 3N'2+2 Bin_llq‘_.-ﬂ
2

) 1
+ [12(5 + 2183) — n(3w* + o) + oW — 53 4 288] /1 WP
6(F — 1)3(1 — my)3

0

3(3W2 + 2)(% + sin‘ln) + (289 — 583 + 18§)/1 — W
61 - )34 - W

. nodn
J+ —
0 (1 - Nn)3|/l - 72

1
- 2N2 + 1 Bin...lN—'q N [T](lI-NJ'I'—Ne) —3N~'§'|/l—1]2
o(We — 1)2V1 -5 1 —8n oN2(R2 — 1)%(1 — W)

(oW + 1)(3 + sin_lN) + 31 - &2
2(1 - )1 ~ ¥
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72dn

Jr
0

(1 - Nn)hl/l - q°

[ lI-NQ + 1 Sin__l u
2

(mR —.1)3;/1 -T2 S 1l-

[’12(51‘5 + 1083 — §) — n(68" — 278 + 3) + W3+ 13N]|/1 - n°
62 — 1)3(1 - Fy)3

3(4N° + l)G_—f + sin_1N> + N(QN2 + 13)/1 - 52
6(1 — iv2)3|/1 - §2

The F(N) factors are formilated by referring to tables I and IT
and by using the evaluation of the five basglic Integrals and are as
follows:

F(¥) =2 (1-77°g

= 2(1 — )1/2 <11 + sin—IN + Nﬁ - N2>

7(1 + N)3/2

Fo(N) = % (1 -N)P2(Ts - Iy)

M( + sin7lN + M - N2>

x(l + 1‘1)3/2
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Fy(N) = Bisr (1 - N)2(2I2 - Ih> ‘

2 -y [3(% + sin_1N> + (5 — 20?1 — NQ]

" 3e(1 + W2 -

@ =20a-my

T a1+ w321 _mi 2

2 <£ + sj'.n"lN + N1 - N2> |

Fs(W) =2 (1 -M[L - @ - W]

= N [(2 - N)(% + sin_lN> + (N2 + 2§ — 2)f1 — Ne]

(1 + N)5/2(1 — §)1/2

F6(N) = % (1 —N)a[i- (13 - 15) -7 EN (12 - Ilt)]

i} (1 + §)5/2(1

2 i [(1 - 8N)<22‘- + sin_lN> — N(6N° + 8N — 7)j1 — NQ:I
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R =2 (- N)QB (r3 - 1) - L (1 - Iu)]
= 2 682 — 8N T 1)
(1 + M)7/20 — W32 [3( + l)<2 + sin N)

+ N(1ow* + 1683 — 20N2 — LON + 29)/1 - NE:I

2
FB(N)=%(1_N)2[<1i1q>11—1i1q12]

- N R . ) -
(1 + W)S2Q —N)3/2[(2 N)@ * e 19 + (82 4 2F —2)|1 NQ]

L 2
F9(N) =+ (1-N)T,

2 [(21‘?2 + i) 121+ sin—1N> + 301 — NQJ

) (1 + N)5/2(1 —m)t/e

Fyo() = & (1 - W,

1/2
= 2(3('1_ N;)i/e [3(41‘12 + 1)(.275 + sin“lN> + N(2W® + 13)/1 - NQJ
(1 +
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Fll(N) =1-N

(Ratio of area of sweptback wing to basic triangular wing.)

(See discussion of derivative Cp..)

The variation of each of the F(N) factors with N from
N=-1 to N=1 is presented in figure 6.

e o A 7 o T et e
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Figure 1l.— Sweptback wing tapered to a point with sweptback or '

sweptforward trailing edges.

The elemsntal triangle and

agsoclated data are shown with respect to wing with sweptback

trailing edge.

an angle greater than the Mach angle (

Note that trailing edge 1s always inclined at
|N[§BZ§.
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Figure 2.- Axes and notation used in analysis.
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Figure 3.- Velocities, forces, and moments relative to principal axes
with origin at %c.

Figure 4.- Velocities, forces, and moments relative to stability axes
with origin at %c - X4+ Principal axes of figure 2 dotted in

for comparison.
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Figure 5.~ Variation of the elliptic integral factors with BC.
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Values of stability dervatives (radian measured

relative to stability axes system

-

NACA TN No. 1761

NooX s .l
R —————
o} ' Chr
-.002
~ 004} e A T —
-.00s} Z_cy / \L
~
-.oo8L
/0

6 =F =4 8 -2

o)
N
Flgure T.~- The variatiogs of the staebllity derlvatives with N.
A= 6205 M= 1l.6; = = 0.05; cD°=o.006; Cp, = 0.10 for
derivatl c, 'y, G, ', C, %, C ', C,° ' !
erivatclves },B: 1,7 ‘mg? np’ nr:CYB,CYP:

<

= *

end Oy ‘. |v| = ‘1-1-*—"-:—1"—’-‘-

J 2 S A S S 7



NACA TN No. 1761 29

.O/r
ot
-.0/k
- O,QL
. !
L
or Lo,

Values ofstability derivatives (radian measure)
relative to otability axes system

-3 mor
— gl
- 5L
- , ,
_ C‘,_ocano’Cl_o.c
3l \K
2
/b rq
oL
’ /
T ﬂ//
-2 ] 1

0 12 JZ 6 I8 20 =22
Mach number,M

(a) A = 6°.
Figure 8.- The variation of the stability derivatives with Mach number.
A= 3; %g = 04053 CDO = 0.006; Cp, = 0.10 for derivatives CZB’,
Ci,'s C1's Cag's Ca's Cals Oxg's Oy, emd Oy t.

Bcglnl = |1 - koot




NACA TN No. 1761

30

9
/o“
v | N 3
Y ~ ) ol T
N £ S Q
N N Ol S T8 3 | - S w,
O Q T Q ~ o .
N f oo & 8/ & | RS %
) A m 1
TR T a I S 2
Cn S CY h Q Cm ..A.M < <
& £ g
N r ,,/_ f s
1 . ] L] L L 1 1 1 i | { ] | | 0
m Q N w S~ 0 Y ¥ Ny 9oy w0 &
Q Q09 _

i

'wo0fe sox0 A2171g020 02 SAIZD IO

(SUNEVIU UD/O DL ) §INRDAIUSP ARG O SO 119D/

Figure 8.- Concluded.




